IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 4, JULY 1978

345

A General Empirical Solution to the Macro Software
Sizing and Estimating Problem

LAWRENCE H. PUTNAM

Abstract—Application software development has been an area of
organizational effort that has not been amenable to the normal manage-
rial and cost controls. Instances of actual costs of several times the
initial budgeted cost, and a time to initial operational capability some-
times twice as long as planned are more often the case than not.

A macromethodology to support management needs has now been
developed that will produce accurate estimates of manpower, costs,
and times to reach critical milestones of software projects. There are
four parameters in the basic system and these are in terms managers
are comfortable working with—effort, development time, elapsed time,
and a state-of-technology parameter.

The system provides managers sufficient information to assess the
financial risk and investment value of a new software development
project before it is undertaken and provides techniques to update
estimates from the actual data stream once the project is underway.
Using the technique developed in the paper, adequate analysis for de-
cisions can be made in an hour or two using only a few quick reference
tables and a scientific pocket calculator.

Index Terms—Application software estimating, quantitative software
life-cycle management, sizing and scheduling large scale software pro-
jects, software life-cycle costing, software sizing.

I. INTRODUCTION
Current State of Knowledge

HE earliest efforts at software cost estimation arose from

the standard industrial practice of measuring average
productivity rates for workers. Then an estimate of the total
job was made—usually in machine language instructions. Ma-
chine language instructions were used because this was the way
machines were coded in the early years and because it also
related to memory capacity which was a severe constraint with
early machines. The total product estimate was then usually
divided by the budgeted manpower to determine a time to
completion. If this was unsatisfactory, the average manpower
level (and budget) was increased until the time to do the job
met the contract delivery date. The usual assumption was
that the work to be done was a simple product—constant pro-
ductivity rate multiplied by scheduled time—and that these
terms could be manipulated at the discretion of managers.
Brooks showed in his book, The Mythical Man-Month [1] that
this is not so—that manpower and time are not interchangeable,
that productivity rates are highly variable, and that there is no

Manuscript received June 15, 1977; revised December 15, 1977 and
March 6, 1978.

The author is with the Space Division, Information Systems Programs,
General Electric Company, Arlington, VA 22202.

nice, industry standard that can be modified slightly to give
acceptable results for a specific job or software house. This
was not serious for small programs built by one person or a
small group of persons. But when system programming prod-
ucts of hundreds of programs, hundreds of thousands of lines
of code, built by multiple teams with several layers of manage-
ment arose, it became apparent that severe departures from
constant productivity rates were present and that the pro-
ductivity rate was some function of the system complexity.

Morin [2] has studied many of the methods which have
been tried for software cost estimating. She found that most
of these methods involved trying to relate system attributes
and processing environmental factors to the people effort,
project duration, and development cost. The most generally
used procedure was multiple regression analysis using a sub-
stantial number of independent variables. Morin concluded,

. I have failed to uncover an accurate and reliable method
which allow programming managers to solve easily the prob-
lems inherent in predicting programming resource require-
ments. The methods I have reviewed contain several flaws—
chief among them is the tendency to magnify errors”

Morin recommended that “. . . researchers should apply non
linear models of data interpretation ... as Pietrasanta [31]
states, the use of non linear methods may not produce simple,
quick-to-apply formulas for estimating resources, but estima-
tion of computer resources is not a simple problem of linear
cause-effect. It is a complex function of multiple-variable
interdependence.”

. The most important objective of estimation research
should be the production of accurate estimating equations. At
this time [1973], the application of non linear methods seems
to hold the greatest promise for achieving this objective.”

Gehring and Pooch [3] confirm Morin’s findings. They state,
“There are few professional tools or guidelines which are ac-
cepted as accurate predictions or good estimates for various
phases of software development.” Gehring and Pooch make
the important observation that the basic resources in software
development are manpower, machine-time, money, and
elapsed time and that these resources are interdependent.

I call these resources the management parameters. If they
are indeed interrelated in a functional way and if they can in
turn be functionally related to software system parameters,
then we should be able to produce a mathematical model that
will be useful in predicting and controlling the software life-
cycle process. Bellman [28] makes the point that by devel-
oping mathematical models of a process, we avoid the task of

0098-5589/78/0700-0345800.75 © 1978 IEEE

346

trying to store all possible information about the process and
instead let the model generate the data we need.

Gehring [4], [5] feels existing knowledge and the state of
the art is too meager to do this with software. Morin [2] sug-
gests it should be tried with nonlinear (interpreted to mean
curvilinear) models.

I take the position that Morin’s approach will work; that
reasonable models can be built that reproduce what actually
happens within the limits of the data measurement, recording,
and interpretation.

A few comments about data are appropriate. The human
effort on a project is generally recorded according to account-
ing rules and standards established by the organization. Each
organization establishes its rules according to its own needs.
Consistency from organization to organization is uncommon.
Recorded data does not come from an instrument (like a
voltmeter) whose accuracy is known. Often manpower is
aggregated or counted at finite intervals (weekly, say) perhaps
from recollection rather than precise notes made at the time.
Not all effort recorded against the job is actually done on the
job. Typically only 4 to S h of an 8 h day are applied to the
project. Administration and other needs of the organization
absorb the rest. It is rare that this administrative and lost time
is charged as such—usually it is billed to the project. This
means manpower data are imprecise. Dollar cost data are
worse since even more categories of expense get subsumed
into the numbers. Generally, I have found that manpower
data accumulated to a yearly value is not more accurate than
*+10-15 percent of the reported value. If the data are ex-
amined at shorter intervals, the percentage variation tends to
be even greater. This is why efforts to estimate and control
using a bottom-up, many finite elements approach have always
failed so far. The process becomes overwhelmed by the im-
precision engendered by the “noise.” This comes as a blessing
in disguise, however, because if we treat the process macro-
scopically and use the concepts of expected values and statisti-
cal uncertainty we can extract most of the useful and predic-
tive value and at the same time know something about the
uncertainty or the magnitude of the ‘“noise,” which I will
assert is ever present. In other words, software development
behaves like a time dependent random process. The data
reflect this and are not intractable when so considered.

The time-varying character of software development is also
highly important. Most practitioners treat the problem stati-
cally even though they implicitly recognize time dependence
by the phases into which they divide projects. In fact, time is
the independent variable in software projects. The dependent
variables (manpower, code production) are usually time rates.
The software life cycle is dynamic, not static.

Some investigators have noted this in their work, most
notably Aron [6], Norden [7], [8], Felix and Walston [14],
Daly [15], Stephenson [16], Doty Associates [17], and this
author [9]-[13].

What Is Not Known

The phenomenology of the software development (and
maintenance) process is not known. The data suggest a fairly
clear time-varying pattern. This seems to be of a Rayleigh or

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 4, JULY 1978

similar form. There is considerable “noise” or stochastic
components present which complicate the analysis. Further,
the observables (manpower, cost, time) are strongly subject to
management perturbation. This means that even if a system
has a characteristic life-cycle behavior, if that behavior is not
known to managers, a priori, then they will respond reactively
(nonoptimally with time lags) to system demands. Superim-
posed on this is the ever-present problem of imprecise and
continually changing system requirements and specifications.

Customer Perspective at Start of Project

We can get an appreciation of what information we really
need to know to plan and control large scale software efforts
by looking at the problem the way the customer might at
about the time he would ask for proposals. At this time cer-
tain things are known:

1) a set of general functional requirements the system is

supposed to perform;

2) adesired schedule;

3) adesired cost.

Certain things are unknown or very “fuzzy,”ie.,

1) size of the system;

2) feasible schedule;

3) minimum manpower and cost consistent with a feasible

schedule.

Assuming that technical feasibility has been established, the
customer really wants to know:

1) product size—*a “reasonable” percentage variation;

2) a “do-able” schedule—*a “reasonable” percentage varia-

tion;

3) the manpower and dollar cost for development—*a

“reasonable” variation;

4) projection of the software modification and maintenance

cost during the operational life of the system.

During development both the customer and the developer
want to measure progress using the actual project data. These
data should be used to refine or modify earlier estimates in
order to control the process.

Traditional Estimating Approach

In the past, estimating the size, development time, and cost
of software projects has largely been an intuitive process in
which most estimators attempt to guess the number of mod-
ules, and the number of statements per module to arrive at a
total statement count. Then, using some empirically deter-
mined cost per statement relationships, they arrive at a total
cost for the software development project. Thus the tradi-
tional approach is essentially static. While this approach has
been relatively effective for small projects of say less than
6 months duration and less than 10 man-years (MY) of effort,
it starts to break down with larger projects and becomes
totally ineffective for large projects (2 years development
time, 50 man-years of development effort or greater, and a
hierarchical management structure of several layers).

Dynamic Life-Cycle Model Approach

The approach we shall use will be more along the line of the
experimentalist than the theoretician. We will examine the

PUTNAM: MACRO SOFTWARE SIZING AND ESTIMATING PROBLEM

1 SIDPERS
100

80 -/\'%-’-q

60

MY/YR

347

[SN T T T N T TSN S T T SN S N N

70 717273 74 75 76 77 78 79 80

FY

Fig. 1. Manpower loading as a function of time for the Army’s Stan-
dard Installation-Division Personnel System (SIDPERS).

MY/YR

PROJECT CURVE
TYPICAL
BUDGET
PLAN, TEST & ADJUSTMENT
FUNCTIONAL VALIDATION
SPECIF.
y
OESIGN & EXTENSION MODIFICATION
CODING MAINT
PROJECT MGT
L~ — e

Fig. 2. Typical Computer Systems Command applicator of manpower to a software development project.

TIME
Ordinates of

the individual cycles are added to obtain the project lifecycle effort at various points in time.

data and attempt to determine the functional behavior by
empirical analysis. From those results we will attempt to
arrive at practical engineering uses.

It has been well established from a large body of empirical
evidence that software projects follow a life-cycle pattern de-
scribed by Norden [7], [8]. This life-cycle pattern happens
to follow the distribution formulated by Lord Rayleigh to
describe other phenomena. Norden used the model to describe
the quantitative behavior of the various cycles of R&D projects
each of which had a homogenous character. Accordingly, it is
appropriate to call the model the Norden/Rayleigh model.

The paper will show that software systems follow a life-cycle
pattern. These systems are well described by the Norden/
Rayleigh manpower equation, y = 2Kate"”’, and its related
forms. The system has two fundamental parameters: the life-
cycle effort (K), the development time (#4), and a function of
these, the difficulty (K/t%). Systems tend to fall on a line
normal to a constant difficulty gradient. The magnitude of
the difficulty gradient will depend on the inherent entropy
of the system, where entropy is used in the thermodynamic
sense to connote a measure of disorderedness. New systems
of a given size that interact with other systems will have the
greatest entropy and take longer to develop. Rebuilds of old
systems, or composites where large portions of the logic and
code have already been developed (and hence have reduced the
entropy) will take the least time to develop. New stand-alone
systems will fall in between. Other combinations are also
possible and will have their own characteristic constant gradient
line. :

These concepts boil down to very practical engineering or

businessman’s answers to most of the manpower, investment,
and time questions that management is concerned with [13].
Since elapsed time is ever present in the model as the indepen-
dent variable, this approach is dynamic and hence will produce
numerical answers at any desired instant in time.

II. EMPIRICAL EVIDENCE OF A CHARACTERISTIC
Lire-CYCLE BEHAVIOR

It will be instructive to examine the data that led to the
formulation of the life-cycle model. The data are aggregate
manpower as a function of time devoted to the development
and maintenance of large-scale business type applications.
Fig. 1 shows a typical budget portrayal from U.S.A. Computer
Systems Command.! The timeframe of this display is fiscal
year (FY) 1975. Note the straight-line projection into the
years FY’76 and beyond.

Norden [7], [8] found that R&D projects are composed of
cycles—planning, design, modeling, release, and product
support.

Norden [8] linked cycles to get a project profile. Fig. 2
shows the comparable software cycles laid out in their proper
time relationship. When the individual cycles are added to-

1US.A. Computer Systems Command is the U.S. Army central de-
sign agency for Standard Army Management Information Systems that
run at each Army installation. It employs about 1700 people. It de-
signs, tests, installs, and maintains application software in the logistic,
personnel, financial, force accounting, and facilities engineering areas.
Systems range in size from 30 MY of development and maintenance
effort to well in excess of 1000 MY.

348

MANPOWER
(PEOPLE/YR)
A

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 4, JULY 1978

CUMULATIVE
EFFORT
(TOTAL PEOPLE)

»

tg TIME

Fig. 3. Expected manpower behavior of a software system as a function

of time.

[
//
0“
. e o
Y/Ymax /
T PROJECT CURVE
FUNCTIONAL
DESIGN, TEST &
SPECIF, yADATION
t~ v MODIFICATION
DESIGN & N\ XTENSION (25%
25 com'm; 10% MAIN
(e 20% _ mer (10%)
> 3 + 4 :,/ :/\ N
0 1
t/t
/ d

Fig. 4. Large scale software application system life cycle with subcycles and empirically determined milestones added.

gether, they produce the profile of the entire project. This is
labeled Project Curve on the figure.

When the model was tested against the man-year budgetary
data for about 50 systems of the Computer Systems Com-
mand, it was discovered that Computer Systems Command
projects followed this life-cycle model remarkably well.

Data from about 150 other systems from other operations
have been examined over the past two years [18] -[27] . Many
of these also exhibit the same basic manpower pattern—a rise,
peaking, and exponential tail off as a function of time. Not all
systems follow this pattern. Some manpower patterns are
nearly rectangular; that is, a step increase to peak effort and a
nearly steady effort thereafter. There is a reason for these
differences. It is because manpower is applied and controlled
by management. Management may choose to apply it in a
manner that is suboptimal or contrary to system requirements.
Usually management adapts to the system signals, but generally
responds late because the signal is not clear instantaneous with
the need.

Noise in the data is present for a variety of reasons. For ex-
ample, inadequate or imprecise specifications, changes to
requirements, imperfect communication within the human
chain, and lack of understanding by management of how the
system behaves.

Accordingly, we observe the data, determine the expected

(average) behavior over time, and note the statistical fluctua-
tions which tell us something about the random or stochastic
aspects of the process. Conceptually the process looks like the
representation shown in Fig. 3.

The data points are shown on the manpower figure to indi-
cate that there is scatter or “noise” involved in the process.
Empirical evidence suggests that the “noise” component may
be up to +25 percent of the expected manpower value during
the rising part of the manpower curve which corresponds to
the development effort. 7; denotes the time of peak effort
and is very close to the development time for the system. The
falling part of the manpower curve corresponds to the opera-
tions and maintenance phase of the system life-cycle. The
principal work during this phase is modification, minor en-
hancement, and remedial repair (fixing “bugs”).

Fig. 4 shows the life-cycle with its principal component
cycles and primary milestones. Note that all the subcycles
(except extension) have continuously varying rates and have
long tails indicating that the final 10 percent of each phase
of effort takes a relatively long time to complete.

III. Basic CHARACTERISTICS OF THE NORDEN/RAYLEIGH
MoDEL AS FORMULATED BY NORDEN [7], [8]

It has been empirically determined that the overall life-cycle
manpower curve can be well represented by curves of the

PUTNAM: MACRO SOFTWARE SIZING AND ESTIMATING PROBLEM

Norden/Rayleigh form:

y=2Kate™ MY/YR 6}

where @ = (1/2¢2), t4 is the time at which y is a maximum, K is
the area under the curve from ¢ = 0 to infinity and represents
the nominal life-cycle effort in man-years.

The definite integral of (1) is

y=K(1-e") MY 2

and this is the cumulative number of people used by the system
at any time ¢.

Fig. 5 shows both the integral and derivative form of the
normalized (K =1) Norden/Rayleigh equation. When K is
given a value in terms of effort these become effort and man-
loading curves, respectively. Because each of the parameters K
and & can take on a range of values, the Norden/Rayleigh equa-
tion can represent a wide variety of shapes and magnitudes.
Fig. 6 shows the effect of first varying the shape parameter a =
(1/2£%), holding the magnitude K constant, and then varying
the magnitude K holding the shape parameter a constant.

Now we wish to examine the parameters K and ;.

K is the area under the y curve. It is the total man-years of
effort used by the project over its life-cycle.

ty is the time the curve reaches a maximum. Empirically
this is very close to the time a system becomes operational and
it will be assumed hereafter than #; = 5 = development
time for a system.

Most software cost is directly proportional to people cost.
Thus, the life-cycle ($LC) cost of a system is

$LC = SCOST/MY - K. 3)

We neglect the cost of computer test time, inflation over-
time, etc., all of which can be easily handled by simple ex-
tensions of the basic ideas. The development cost is simply
the $COST/MY times the area under the y curve from 0 to 74,
and the bar over $COST/MY indicates the average cost/MY.

That is,

PN |
$DEV = §COST/MY f ydt
0

= $COST/MY - (0.3945K)

$DEV = 40 percent $LC. @)

These are the management parameters of the system—the
people, time, and dollars. Since they are related as functions
of time, we have cumulative people and cost as well as yearly
(or instantaneous) people and cost at any point during the
life-cycle.

In the real world where requirements are never firmly fixed
and changes to specifications are occurring at least to some
extent, the parameters K and 4 are not completely fixed or
deterministic. There is “noise” introduced into the system by
the continuous human interaction. Thus, the system has
random or stochastic components superimposed on the deter-
ministic behavior. So, we are really dealing with expected
values for y, y, and the cost functions with some “‘noise”
superimposed.

349

MANPOWER UTILIZATION CURVE

CUMULATIVE MANPOWER UTILIZATION

o
S
—

78% of total effort utilized

~
o

39% of total effort utilized

L =K(1-e-7%)
50 Y= ko100
2=002

25

cumulative per cent of total effort

CURRENT MANPOWER UTILIZATION

¥ = 2 Kate-»?
K=1-00
2=0-02

per cent of total effort
S

IS
o
®
°
-
)
-
s
-
o

18
time

Fig. 5. Norden/Rayleigh model [7].

MANPOWER UTILIZATION CURVE

¥ =2 Kate - at
MAN MONTHS DISTRIBUTION OF THE SAME TOTAL UTILIZED EFFORT,
VARYING THE TIME REQUIRED TO REACH PEAK MANPOWER.
250r K= 1000 FOR ALL CURVES

¥ max*202.2— 356 = TOTAL EFFORT UTILIZED

=PARAMETER DETERMINING
TIME OF PEAK MANPOWER

50 : ELAPSED TIME FROM START

¥ mox 5121-3 — —
100 |
¥ mox * 866 — — +-
v | 00102
50 | | ~L
¢l ~.
~ S~o
0, L I " I 1) I S et S S
oz::;:ella 10 12 14 16 18 20 22 24 26
MONTHS
1% mox=3 I ‘
1y max:=5 |
1y mox=7
SHAPE OF EFFORT DISTRIBUTION FOR CONSTANT TIME-TO-PEAK
BUT DIFFERENT TOTAL EFFORT UTILIZATION.
MAN MONTHS 0:.02 FOR ALL CURVES
2001
¥ mox 1820 — —|— — — — =y~
mox . \\ K=1500
,/ l \\/
150F /] \
. S M _K:1000
qu,"2|-3 e —I’— —‘/_|-‘\ /\/
100} 7/ '/ | ’\ \.\
/ .
[I N \\ K:500
§ o 2606 — —|—/-f — — N
max I/ ~
o, | RN
!/ IS
1, | R
7 ~3~<
0 ! PR Il 1 1 —C
2] 2 aq | 6 8 10 12 14 3 18
19 mox =5 MONTHS

Fig. 6. Life-cycle curve: effect of changing parameter values [8].

Fig. 3 illustrates this—the random character will not be
pursued further here except to say it has important and prac-
tical uses in the risk analysis associated with initial operational
capability and development cost.

350

SOFTWARE DEVELOPMENT PROCESS
{TRANSFORMATION PROCESS)

WORKIN_] P’A WORK OUT
I SN
X . ;g

STATEMENTS
DEVELOPMENT (Ss)

TIME

LOSSES
Fig. 7. Software development as a transformation.

IV. CONCEPTUAL DESCRIPTION OF THE SOFTWARE
PRrROCESS

Let us now shift our attention from the empirical observa-
tions to some conceptual underpinnings that will shed more
light on the software development process. We will look at
the Norden/Rayleigh model, its parameters and dimensions
and how it appears to relate to other similar processes.

In particular we will consider the management parameters
K and t; so that we may study the impact of them on the
system behavior.

Fig. 7 shows the development process as a transformation.
The output quantity of source statements is highly variable
from project to project. This implies that there are losses in
the process.

Returning to the Norden/Rayleigh model, we have noted
that in mathematical terms, K is the total life-cycle man-years
of the process and a is the shape parameter. But @ is more
fundamental in a physical sense.

a = (1/2t%), where t4 is the time to reach peak effort. In terms
of software projects, 5 has been empirically shown to corre-
spond very closely to the development time (or the time to
reach full operational capability) of a large software project.
We can write the Rayleigh equation with the parameter ¢4
shown explicitly by substituting the following for a:

=Kt te*17a,

%)

Now it is instructive to examine the dimensions of the param-
eters. .

K is total work done on the system.

t4 and ¢ are time units.

(K/t3) X t has the dimensions of power, i.e., the time rate of
doing work on the system, or manpower. But the ratio K/t3
appears to have more fundamental significance. Its dimen-
sions are those of force.

When the Rayleigh equation is linearized by taking logarithms
(suggested by Box and Pallesen [29]) we obtain

In (y/t)=In (K/t}) + (—lz) 2. (6)
2t5
When the natural logarithm of the manpower divided by the
corresponding elapsed time is plotted against elapsed time
squared (Fig. 8), a straight line is produced in which In (K/t3)
is the intercept and -1/275 is the slope.

When this was done for some 100 odd systems, it was found

that the ‘argument of the intercept K/¢3 had a most interesting

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 4, JULY 1978

10 (Y7

- INTERCEPT = 1n(K/142)
1n (125) 2%
.

SLOPE = -_L
21d5

DIFFICULTY

8 ~\
-
.
-

Fig. 8. Difficulty versus time? [29].

>
2 (years?)

property. If the number K/t3 was small, it corresponded with
easy systems; if the number was large, it corresponded with
hard systems and appeared to fall in a range between these
extremes. This suggested that the ratio K/t3 represented the
difficulty of a system in terms of the programming effort and
the time to produce it.

When this difficulty ratio (K/¢3) is plotted against the pro-
ductivity (PR) for a number of systems we get the relation-
ships shown in Fig. 9.

This relationship is the missing link in the software process.
This can be illustrated by removing the cover from the black
box, as shown in Fig. 10.

Feasible Effort—Time Region

A feasible software development region can be established
intuitively. Systems range in effort from 1 to 10 000 MY life-
cycle. Development times (z7) range from 1 or 2 months to
5 to 6 years. For large systems, the range narrows to 2-5 years
for most systems of interest. Five years is limiting from an
economic viewpoint. Organizations cannot afford to wait
more than S years for a system. Two years is the lower limit
because the manpower buildup is too great. This can be
shown a number of ways.

1) Brooks [1] cites Vysottsky’s observation that large scale
software projects cannot stand more than a 30 percent per year
buildup (presumably after the first year). The Rayleigh equa-
tion meeting this criterion is with ¢4 > 2 years.

2) The manpower rate invokes the intercommunication law
cited by Brooks [1]; complexity = N[(N - 1)/2] where N is
the number of people that have to intercommunicate. Thus, if
the buildup is too fast, effective human communication can-
not take place because the complexity of these communica-
tion paths becomes too great.

3) Management cannot control the people on a large soft-
ware project at rates governed by the Norden/Rayleigh man-
power equation with 5 <2 years without heroic measures.

4) Generally, internal rates of manpower generation (which
is a function of completion of current work) will not support
an extremely rapid buildup on a new project. New hiring can
offset this, but that approach has its own shortcomings.

When the feasible region is portrayed in three dimensions by
introducing the difficulty K/t as the third dimension, we have

PUTNAM: MACRO SOFTWARE SIZING AND ESTIMATING PROBLEM 351

2 3 4 5

190 T T P rr i T rrrrTiT TEECIT,

8 PRODUCTIVITY

7 ’ vS.

! B DIFFICULTY

; .

- T

; ; HHE U
_ S BB e
-, L S
= - T
2 L \ R i
= — e ;
z ! NG
| PRLL T TN
< ! | U100 B TN
I 100 ; e : 1= SIDPERS i : ™,
w I .: ST —
g LT 1 N SAILS AB/X 1N ™
g ; : - #W sTaNFINs -
. L1 ™
= L : EEESSIRE] a4 i
5 : :
g)
(=] - B H
g 3 =

‘(
r pee
! e
= T N
10 i i .
1 2 3 4 5 6 78910

2 3 4 5

DIFFICULTY, D = K/t3

Fig. 9. Productivity versus difficulty for a number of U.S. Army Computer Systems Command systems. Lines 1, 2, and 3

represent different development environments.

Line 1 represents a continental United States environment, batch job

submission, a consistent set of standards and for standard Army systems that would be used at many installations. Line 2
is typical of a Pacific development environment, (initially) a different set of standards from 1, and the intended applica-
tion was for one (or only a few) installations. Line 3 is typical of the European environment, different standards, single
installation application. The two points shown for lines 2 and 3 are insufficient in themselves to infer the lines. Other
more comprehensive data [14] show relations like line 1 with the same basic slope (-.62 to -.72). Based on this corrob-
orating evidence, the lines 2 and 3 are sketched in to show the effect of different environment, standards, tools, and

machine constraints.

SOFTWARE DEVELOPMENT PROCESS

BLACK BOX TRANSFORMATION
(K, td, 0 ——> Ss)

INPUT

MANPOWER
fIK, 8

1 .
DEVELOPMENT \

.
TIME (tg) D ! 5= POWER
(WHAT WE 9

PAY FOR)

TIME X PR

ABDRTED "

c“M"'L‘ES LDSSES (Fuucnnn OF DIFFICULTY) -
& ‘ (BLOOD, SWEAT, TEARS)
’ {‘3 s5 (WHAT GETS GROUND UP IN THE PROCESS)

Flg. 10. Black box with cover removed.

a difficulty surface (Fig. 11). Note that as the development
time is shortened, the difficulty increases dramatically. Sys-
tems tend to fall on a set of lines which are the trace of a
constant magnitude of the difficulty gradient. Each of these
lines is characteristic of the software house’s ability to do a
certain class of work. The constants shown [8], [15], [27]
are preliminary. Further work is needed to refine these and
develop others.

Difficulty Gradient

We can study the rate of change of dlfﬁculty by taking the
gradient of D. The unit vector i points in 74 direction. The
unit vector points in K (and $COST) direction.

grad D points almost completely in the -f(—td) direction.
The importance of this fact is that shortening the development
time (by management guidance, say) dramatically increases
the difficulty, usually to the impossible level.

Plotting of U.S. Army Computer Systems Command systems
on the difficulty surface shows that they fall on three distinct
lines:

K[ty =8,K/t3 =15, and K/t] =

The expression for grad D is

-K/.\IA
3 2])
d

grad D =

We note that the magnitude of the i component has the form
K/t}. The magnitude of grad D is

lgrad D| =3 D/d t4 = 2K/t3, since 3 Do K << 9 D/d t4

throughout the feasible region. |grad D] is the magnitude of
the maximum directional derivative. This points in the nega-

352

K

p=—X_

tdzlr

10,000
1,000

—100

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 4, JULY 1978

N 3
K-Std IS A

CONSTANT
GRADIENT LINE

Fig. 11. Difficulty surface.

tive 7 (t4) direction. The trace of all such points is a line K =
constant times #3. Such a line seems to be the maximum diffi-
culty gradient line that the software organization is capable of
accomplishing. That is, as system size is increased, the develop-
ment time will also increase so as to remain on the trace of a
line having a constant magnitude of the gradient defined by

K/t3 = C, where C can equal either 8, 15, or 27. 2

Study of all US. Army Computer Systems Command sys-
tems shows that 1) if the system is entirely new—has many
interfaces and interactions with other systems—C = 8; 2) if the
system is a new stand-alone system, C = 15; and 3) if the sys-
tem is a rebuild or composite built up from existing systems
where large parts of the logic and code already exist, then
C=27. (These values may vary slightly from software house
to software house depending upon the average skill level of
the analysts, programmers, and management. They are, in a
sense, figures of merit or “learning curves” for a software
house doing certain classes of work.)

Significance of Management Directed Changes to the
Difficulty

Managers influence the difficulty of a project by the actions
they take in allocating effort (~K) and specifying scheduled
completion (~t;). We can determine the sensitivity of the
difficulty to management perturbation by considering a few
examples.

Assume we have a system which past experience has shown

2These constants are preliminary. It is very likely that 6 to 8 others
will emerge as data become available for different classes of systems.

can be done with these parameter values: K =400 MY, #; =3
years. Then D =K/t3 =400/9 =444 MY/YR?. If manage-
ment were to reduce the effort (life-cycle budget) by 10
percent, then K = 360, MY ¢; =3 years, as before, and D =
360/9 = 40 (10 percent decrease). However, the more com-
mon situation is attempting to compress the schedule. If
management were to shorten the time by —% year, then K =400,
ty=2.5, and D =400/6.25 = 64 (44 percent increase). The
result is that shortening the natural development time will
dramatically increase the difficulty. This can be seen easily by
examining Fig. 6 and by noting that K = v/e Ymax tq. D is
thus proportional to Y may /t4 Which is the slope from the origin
to the peak of the Norden/Rayleigh curves. If the slope is too
great, management cannot effectively convert this increased
activity rate into effective system work probably because of
the sequential nature of many of the subprocesses in the total
system building effort.

V. THE SOFTWARE EQUATION

We have shown that if we know the management parameters
K and ¢4, then we can generate the manpower, instantaneous
cost, and cumulative cost of a software project at any time ¢
by using the Rayleigh equation.

But we need a way to estimate K and ?4, or better yet, ob-
tain a relation that shows the relation between K, ¢4, and the
product (the total quantity of source code).

It can be shown that if we multiply the first subcycle curve
(shown as the design and coding curve in Fig. 4) by the average
productivity (PR) and a constant scale factor (2.49) to account
for the overhead inherent in the definition of productivity,
then we obtain the instantaneous coding rate curve. The
shape of this curve is identical to the design and coding curve

PUTNAM: MACRO SOFTWARE SIZING AND ESTIMATING PROBLEM

but its dimensions are source statements per year (S;). The
area under this coding rate curve is the total quantity of final
end product source statements (S) that will be produced by
time ¢. Thus, if we include all the area under the coding rate
curve we obtain S, =2.49 -PR -K/6 source statements, de-
fined as delivered lines of source code. From our empirical
relation relating the productivity PR to the difficulty, we can
complete the linkage from product (source statements) to the
management parameters.

Now the design and coding curve y, has to match the over-
all manpower curve y initially, but it must be nearly complete
by t4; thus, y; proceeds much faster, but has the same form
as y.

This suggests that the Norden/Rayleigh form is appropriate
for y; but now the parameter ¢, will be some fraction of 4.
A relation that works well is

to =ta/\/6.
Let us substitute that into a y; Rayleigh curve,

. 427n 42
Y1 =Ky [t} -t e,

- K .t -e 236

1316
- 5Ky e 31ty

t
but Ky =1 K,s0y; =K/t3 -t - e "aand y, =D - t - e3*1"a
is the manpower for design and coding, i.e., analysts and pro-
grammers doing the useful work on the system.

If we multiply by the average productivity rate PR then we
should get the rate of code production. But here we have to
be careful of the definition of productivity. The most com-
mon such definition is

N

PR = total end product code

total effort to produce code -

The total effort to produce the code is a burdened number—it
includes the overhead and the test and validation effort, i.e.,

d
W(ty) = f ydt=03935K.
0

The y, curveis 95 percent complete at #4,y, (f4) = fotd Yy dt=
0.95(K/6). Accordingly, the burdened rate PR should be mul-
tiplied by 0.3935 K/0.95/6 K = 2.49 to adjust for this condi-
tion.

Then

— ds, .
249 PR -y, = Zi-t—s=Ss

S;=249 -PR-K[t] -t
.73 Md gource statements/year

ss=f S‘sdt=2.49-}7ﬁ'f Kt}

] 0o

-t-e% g,

353

Therefore, Sy =2.49 - PR - K/6 source statements, interpreted
to mean delivered lines of source code. From our empirical
relation relating the PR to the difficulty, we can complete the
linkage from product (source statements) to the management
parameters.

Recall that we found that PR = C,, D™?? by fitting the data.
The constant appears to take on only quantized values. Sub-
stituting,

S,=249 -PR-K[6

-2/3
=249C, (—’§> K/6
ta
249

S5 = —6—' CnK1/3 l‘;’s.

The most dominant value for C,, in Fig. 9 is 12 000. Hence,
for systems having that productivity constant C,

5, = 249

6

Ss = 4980 K2 14 source statements.

(12 000) K73 ¢4

So, in general, the size of the product in source statements is
Sy =Cy K'P 43 (®)

where C; has now subsumed 2.49/6, is quantized, and seems
to be a measure of the state of technology of the human-
machine system.

The SIDPERS system is shown on Fig. 8. Its parameters are
K =700, ¢ty =3.65. The calculated product size is

S, = 4980 (700)'7? (3.65)*" =247 000

source statements which is reasonably close to the reported
256 000 source statements.

Note that we have now found a reasonable relation linking
the output (Sg) to the input (K, t; - management parameters)
and a constant (Cy.) which is somehow a measure of the state
of technology being applied to the project. C; appears to be
quantized. The constant can be increased by applying better
technology. The constant seems to relate to machine through-
put (or programmer turnaround, available test time, etc.) and
other technological improvements like the Chief Programmer
Team, Top Down Structured Programming, on-line interactive
job submission, etc.

Fig. 12 shows this relation combined with the limiting
gradient conditions for the entire ranges of interest for X, ¢4,
and system size (S;). This figure is very enlightening because
it shows the incompressibility of time (#;) and the very un-
favorable impact of trading effort for time. This is, in fact,a
quantitative description of Brook’s law [1]. Adding people to
accelerate a project can accomplish this until the gradient con-
dition is reached, but only at very high cost.

For example, assume we have a new system of 100 000 S;
to build. If we have 5 years to the job, it can be done with
5 MY of development effort; however, if it has to be done in
3% years then it will cost about 25 MY of effort—a fivefold
increase in effort (and cost). At the shortest possible time,
2% years, it will take about 55 MY of development effort, a

354

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 4, JULY 1978

ev sfmy 25 fmy 1004y / \
!
sog v | 43 . V
D > N
20g//My 3 \QQ““ SRS

oS

DEVELOPMENT TIME td (YEARS)
w
—

Ss=ckK td ,Ck=4984

2 4
/ SIZE - TIME - EFFORT
TRADE-OFF CHART
1/3 . 4/3

0
Or 100 200 300 400 500 600 700 800 900 1000
SYSTEM SIZE SS (000)
()

W
& & Iy
DEV 5 #MY &

7
L Mlmr,'
¢¢/ w50 W]
e

/

w
N

DEVELOPMENT TIME ty (YEARS)

[\
N

AN

SIZE - TIME - EFFORT
TRADE-OFF CHART

NN
\

- 1/3 4 4/3 -
/ S.=C, K t , C, = 10040
] % / T : :
0 T
0 100 200 300 400 500 600 700 800 900 1000

SYSTEM SIZE Sq (000)

()

Fig. 12. (a) Size-time-effort tradeoff for function Sy = 4984 K 13 :‘,/ 3. Thisis representative of about 5 years ago. Batch
development environment, unstructured coding, somewhat “fuzzy requirements and severe test bed machine constraint.
(b) Size-time-effort tradeoff for function Sy = 10040 Kt 3/ 3, This is reasonably representative of a contemporary
development environment with on-line 1nteract1ve development, structured coding, less “fuzzy” requirements, and ma-
chine access fairly unconstrained. In comparing the two sets of curves note the significant improvement in performance
from the introduction of improved technology which is manifested in the constant Cy.

PUTNAM: MACRO SOFTWARE SIZING AND ESTIMATING PROBLEM

tenfold increase over the 5 year plan. Clearly, time is not a
“free good” and while you can trade people for time within
narrow limits, it is a most unfavorable trade and is only justi-
fied by comparable benefits or other external factors.

The Effort-Time Tradeoff Law

The tradeoff law between effort and time can be obtained
explicity from the software equation

Sg=Cy KR 33,

A constant number of source statements implies K ¢ constant.
So K = constant/t}, or proportionally, development effort =
constant/z, is the effort-development time tradeoff law.

Note particularly that development time is compressible
only down to the governing gradient condition (see Fig. 12);
the software house is not capable of doing a system in less
time than this because the system becomes too difficult for
the time available.

Accordingly, the set of curves relating development effort
(0.4 K), development time (¢;), and the product (S;) permits
project managers to play “what if” games and to tradeoff
cost versus time without exceeding the capacity of the soft-
ware organization to do the work.

Effect of Constant Productivity

One other relation is worth obtaining; the one where the
average productivity remains constant.

PR =C, D™P = constant implies that D = constant.

So the productivity for different projects will be the same
only if the difficulty is the same. This does not seem reason-
able to expect very frequently since the difficulty is a measure
of the software work to be done, i.e., K/t7 =D which is a
function of the number of files, the number of reports, and
the number of programs the system has. Thus, planning a new
project based on using the same productivity a previous pro-
ject had, is fallacious unless the difficulty is the same.

The significance of this relation for an individual system is
that when the PR is fixed, the difficulty K/t% remains constant
during development. However, we know that the difficulty is
a function of the system characteristics, so if we change the
system characteristics during development, say the number of
files, the number of reports, and the number of subprograms,
then the difficulty will change and so will the average pro-
ductivity. This in turn will change our instantaneous rate of
code production (S;) which is made up of both parameter
terms and time-varying terms.

In summary then, S; = C; K'° t4/% appears to be the manage-
ment equation for software system building. As technology
improves, the exponents should remain fixed since they re-
late to the process. Cj will increase (in quantum jumps) with
new technology because this constant relates to the overall
information throughput capacity of the system and (tenta-
tively) seems to be more heavily dependent on machine
throughput than other factors.

The Software Differential Equation

Having shown some of the consequences of the Rayleigh
equation and its application to the software process let us ex-

355

amine why we have selected this model rather than a number
of other density functions that could be fitted to the data. We
return to Norden’s initial formulation to obtain the differen-
tial equation.

Norden’s description [8] of the process is this: The rate of
accomplishment is proportional to the pace of the work times
the amount of work remaining to be done. This leads to the
first-order differential equation

y=2at(K-y)

where y is the rate of accomplishment, 2at is the “pace’ and
(K - y) is the work remaining to be done. Making the explicit
substitution for a = (1/2t3) we have y =¢t/t3 (K - y). t/t} is
Norden’s linear learning law.

We differentiate once more with respect to time, rearrange,
and obtain

©)

This is a second derivative form of the software equation.
The Norden/Rayleigh integral is its solution which can be
verified by direct substitution. Note that this equation is
similar to the nonhomogeneous 2nd order differential equa-
tions frequently encountered in mechanical and electrical
systems. There are two important differences. The forcing
function D =K/t} is a constant rather than the more usual
sinusoid, and the y term has a variable coefficient #/¢3, pro-
portional to the 1st power of time.

y+tltyy+ylty=K[ty=D.

Uses Of the Software Equation

The differential equation j + t/t3 y + y/t] = K|t} is very
useful because it can be solved step-by-step using the Runge-
Kutta solution. The solution can be perturbed at any point
by changing K/t = D, the difficulty. This is just what happens
in the real world when the customer changes the requirements
or specifications while development is in process. If we have
an estimator for D (which we do) that relates K/z% to the sys-
tem characteristics, say the number of files, the number of
reports, and the number of application programs, then we can
calculate the change in D and add it to our original D, con-
tinue our Runge-Kutta solution from that point in time and
thus study the time slippage and cost growth consequences of
such requirements changes. Several typical examples are given
in [13].

When we convert this differential equation to the design and
coding curve y; by substituting #4//6, and K, =K/6, we
obtain

}) +_6_y _—_5_
1 t(zi 1 t(zi

. 6t
ht 7 (10)

d

and multiplying this by the PR and conversion factor as before
we obtain an expression that gives us the coding rate and cumu-
lative code produced at time ¢.

S;+/(tg/V6)? Sy + 1/(t4/\/6)* S;=2.49 - PR -K/t%
= Cu (K[
=249C,D'?. (11)

Since D is explicit, this equation can also be perturbed at any

356

TABLE I
RUNGE-KUTTA SoLUTION TO CODING RATE DIFFERENTIAL EQUATION
FOR SIDPERS

Coding Rate Cumulative Code
(s /year) s
t (years) (000) (000)
0 0 0
.5 52.8 13.6
1.0 89.2 50.0
1.5 101.0 98.6
2.0 90.8 147.0
2.5 68.4 187.0
3.0 4.2 215.0
3.5 2.9 323.0
—> 3.65 20.33 236.0 €— Actual size
4.0 12.3 241.0 at Saension
4.5 5.36 246.0 which is
5.0 2.09 247.0 pretty close
SIDPERS parameters
K = 700 MY
td = 3.65 years
D = 52.54 My/yr
PR = 914, Ss/MY (burdened)
DIFFERENTIAL EQUATION
s+t S+ 1 s = 2.49. PR . D= 2.49.(120090-2/3).p
3.65) 2 3.65) 2 = 2.49 . (12009) . (0)'/3
\/6) JE) = 29902 . (52.54)'/3

111785

time ¢ in the Runge-Kutta solution and changes in require-
ments studied relative to their impact on code production.

An example of code production for SIDPERS using the
Runge-Kutta solution is shown in Table I.

This equation in both its manpower forms y and y; as well
as the code form can be used to track in real-time manpower,
cumulative effort, code production rate, and cumulative code.
Since the equation relates to valid end product code and does
not explicitly account for seemingly good code that later gets
changed or discarded, actual instantaneous code will probably
be higher than predicted by the equation. Thus, a calibration
coefficient should be determined empirically on the first
several attempts at use and then applied in later efforts where
more accurate tracking and control are sought.

VI. SiZING THE SOFTWARE SYSTEM

Having justified the use of the Rayleigh equation from
several viewpoints, we turn to the question of how we can
determine the parameters K and ¢4 early in the process—
specifically during the requirements and specification phase
before investment decisions have to be made.

One approach that works in the systems definition phase
and in the requirements and specification phase is to use the
graphical representation of the software equation S; = C; K'/?
t4d/3 as in Fig. 12. Assume we choose Cy using criteria as out-
lined in Fig. 12. It is usually feasible to estimate a range of
possible sizes for the system, e.g., 1500 000 to 2500 000 S;. It
is also possible to pick the range of desired development times.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 4, JULY 1978

These two conditions establish a probable region on the trade-
off chart (Fig. 12(b), say). The gradient condition established
the limiting constraint on development time. One can then
heuristically pick most probable values for development time
and effort without violating constraints, or one can even simu-
late the behavior in this most probable region to generate ex-
pected values and variances for development time and effort.
The author uses this technique on a programmable pocket
calculator to scope projects very early in their formulation.

Another empirical approach is to use a combination of prior
history and regression analysis that relates the management
parameters to a set of system attributes that can be deter-
mined before coding starts. This approach has produced good
results.

Unfortunately, K and ¢; are not independently linearly re-
lated to such system attributes as number of files, number of
reports, and number of application programs. However, K/t% =
D is quite linear with number of files, number of reports, and
number of application subprograms, both individually and
jointly. Statistical tests show that number of files and number
of reports are highly redundant so that we can discard one and
get a good estimator from the number of application subpro-
grams and either of the other two.

There are relationships other than the difficulty that have
significantly high correlation with measures of the product.
These relationships are

K/tg = f2(x1,%2,%3)
K[ty = f3(x1,%5,%3)
K[t = fa(xy,%;,%3)
K = f5(x1,%;,%3)
Ktg = fo(x1,%2,%3)
Kt§ = f7(x1,%2,%3)

where K and t; are the parameters of the Norden/Rayleigh
equation. x, is the number of files the system is expected to
have, x, is the number of reports or output formats the sys-
tem will have, and x; is the number of application subpro-
grams. These independent variables were chosen because
they directly relate to the program and system building pro-
cess, that is, they are representative of the programmer and
analyst work to create modules and subprograms. More im-
portantly, they are also a measure of the integration effort
that goes on to get programs to work together in a systems
programming product. The other important reason for using
these variables is practical: they can be estimated with reason-
able accuracy (within 10-15 percent) early enough in the
requirements specification process to provide timely man-
power and dollar estimates. Note also that x,, x,, x5 are
imprecise measures—the number of subprograms, say—this
implies an average size of an individual program with some
uncertainty or “random noise” present. It seems prudent to
let the probability laws help us rather than try to be too pre-
cise when we know that there are many other random-like
perturbations that will occur later on that are unknown to us.
For business applications, the number of files, reports, and
application subprograms work very well as estimators. For

PUTNAM: MACRO SOFTWARE SIZING AND ESTIMATING PROBLEM 357
TABLE 11
USACSC SyYSTEM CHARACTERISTICS
Number of
System Life Cycle Size Development Time Files Rpts. Appl. Progs.
K (MY) td (YRS) X Xy X3

MPMIS 73.6 2.28 94 45 52

MRM 84 1.48 36 44 k1l

ACS 33 1.67 1 74 39

SPBS 70 2.00 8 34 23

COMIS 27.5 1.44 14 41 35

AUDIT 10 2.00 n 5 5

CABS 7.74 1.95 22 14 12

MARDIS 91 2.50 6 10 27

MPAS 101 2.10 25 95 109

CARMOCS 153 2.64 13 109 229

SIDPERS 700 3.65 172 179 256

VTAADS 404 3.50 155 101 144

BASOPS-SUP 591 2.73 81 192 223

SAILS AB/C 1028 4.27 540 215 365

SAILS AB/X 1193 3.48 670 200 398

STARCIPS 344 3.48 151 59 75

STANFINS 741 3.30 270 228 241

SAAS 118 2.12 131 152 120

COoScoM 214 4.25 33 101 130
other applications other estimators should be examined. Itis a cxn €3] [ZK/t-x,
usually apparent from the functional purpose of the system [] =[:l [] 14)

as €3 C33 ZK /[ty - x3

which estimators are likely to be best.

The dependent variables K/tf, -+ K, Kty, th, also have sig-
nificance. K/tJ is proportional to the difficulty gradient, K/t
is the difficulty, a force-like term which is built into our time-
varying solution model, the Rayleigh equation. K/t is pro-
portional to the average manpower of the life-cycle and X is
the life-cycle size (area under Rayleigh manpower curve).

Kt, is the “action” association with the action integral, and
Kt4 is a term which arises when the change in source state-
ments is zero.

A numerical procedure to obtain estimators for the various
Kt, Kty, K - - - K[t3 terms is to use multiple regression analy-
sis and data determined from the past history of the software
house. A set of data from U.S. Army Computer Systems
Command is shown in Table II.

We will determine regression coefficients from x,, x; to
estimate K/t; as an example of the procedure. We write an
equation of the form

ax, +tazx; =K/ty

for each data point (K/t4, X,, x3) in the set. This gives a set
of simultaneous equations in the unknown coefficient a, and
a3. We solve the equations using matrix algebra as follows:

(217 [x] [e] = [x]7 [K/ta) (12)
[o] = ([x]T x])7 [*17 [K/t4] (13)

where the o matrix is a single column vector of 2 elements,
the X matrix is a matrix of N rows and 2 columns, the X ! in-
verse matrix is a square matrix of 2 rows and 2 columns, and
the EK/tdi -x; matrix is a column vector of two elements.
Solving for the o; provides coefficients for the regression esti-
mator. For the data set of Table II, we obtain

K[ty =0.2200 x, +0.5901 x3.

Estimators for each of the other K/t -« K, Kty, Kt% are
determined in the same way. These estimators for the data set
of Table II are listed below:

K/f% =0.1991 x, +0.0859 x;

K/tg=02200x, +0.5901 x5
K=-03447x, +2.7931 x,

Kty =-4.1385x, +11.909 x5

Kt% =-483.3196 x, +791.0870 x3.

Assuming we have estimates of the number of reports and
the number of application subprograms, we can get estimates
of K and ¢, by solving any pair of these equations simultane-
ously, or we can solve them all simultaneously by matrix
methods.

Since we have observed that different classes of systems tend

358 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 4, JULY 1978

10000

STANDALONES

1000

K
(my)

100
N
s

000
‘55\\:::

10 100
NO. OF

1000 10000
APPLICATION PROGRAMS

Fig. 13. Life-cycle size as a function of number of application pro-

grams and nu

to fall along distinct constant difficulty gradient lines, we can
exploit this feature by forcing the estimators to intersect with
such a predetermined constant gradient line. We can illustrate
using the matrix approach. For example, let us assume we
have a new stand-alone system with an estimate from the speci-
fication that the system will require 179 reports and 256 appli-
cation programs. The gradient relation for a stand-alone is

K/t =14.

The regression estimators are

K/t3=57.63
K[ty =190.45
K =652.54
Kty =230791

Kt% =116 004.76.

Taking natural logarithms of these six equations we obtain

the matrix equation
[1 1 1111]’ —3’"[111
-3 -2-101 4 -2|Lln

—

[r—tt—tb—-‘i—lb—l
o

mber of reports.

which yields
InK =6.5189;K = 677.86 MY
Inty =12772;%, = 3.59 YRS.

The data used for these examples are that of SIDPERS (K =
700, t5 =3.65, as of 1976). The estimators perform quite
well in this general development time and size regime. They
are less reliable and less valid for small systems (K < 100 MY;
tg < 1.5 years) because the data on the larger systems are more
consistent. Extrapolation outside the range of data used to
generate the estimators is very tenuous and apt to give bad
results.

Once the estimating relationships have been developed for
the software house as just outlined above, then they can be
run through the range of likely input values and system types
to construct some quick estimator graphs. An example of an
early set of quick estimator charts for U.S. Army Computer
Systems Command is shown in Figs. 13-15. These figures give
considerable insight into the way large scale software projects

K]_[l 1 111 1][2.6391]
3 -2-101 4] 4.0540
5.2494
6.4809
7.7441
| 11.6614 |

la

PUTNAM: MACRO SOFTWARE SIZING AND ESTIMATING PROBLEM

10000

359

1000

K
(MY)

7

100

0
0 100

1000 10000

NO. OF APPLICATION PROGRAMS

Fig. 14. Life-cycle size as function of number of application programs
and number of reports.

\
DN
N

o

\
\
L

/

/
1/
7

2
;4
=

250 300 350 400 450

v
=]

0

NO. OF APPLICATION PROGRAMS

Fig. 15. Development time as a function of number of application programs and number of reports.

have to be done in terms of number of application programs,
reports, and the effort to integrate these pieces of work.

Can the estimators developed here be used by other soft-
ware houses? Probably not—at least not without great care
and considerable danger. This is because each software house
has its own standards and procedures. These produce differ-
ent average lengths of application programs. Accordingly,
another software house might have an average length of pro-
gram of 750 lines of Cobol compared with about 1000 lines of

Cobol for Computer Systems Command. Thus, the number
of application programs would reflect a different amount of
work/per application program than CSC experience. Scaling
would be necessary. Scaling may or may not be linear. There
is no evidence to suggest scaling should be linear since most
everything else in the software development process is some
complex power function. Furthermore, we have shown earlier
the influence of the state-of-technology constant. The multiple
regression technique does not explicitly account for this; it is

360

implicit within the data. Therefore, the regression analysis has
to be done for each software house to account for those fac-
tors which would be part of a state-of-technology constant.

Engineering and Managerial Application

Space does not permit the development of management engi-
neering applications of these concepts to planning and con-
trolling the software life-cycle. The applications have been
rather comprehensively worked out and are contained in [13].
Error analysis, or determining the effect of stochastic variation,
again has not been treated due to space limitations.

VII. SUMMARY

Software development has its own characteristic behavior.
Software development is dynamic (time varying)—not static.

Code production rates are continuously varying—not con-
stant.

The software state variables are

1) the state of technology C, or Cy;

2) the applied effort K;

3) the development time #4;and

4) the independent variable time ¢.

The software equation relates the product to the state
variables:

Sy =f PR -y, dt=C, K'P ¢33
0

The tradeoff law K = C/t} demonstrates the cost of trading
development time for people. Time is not free. It is very
expensive.

REFERENCES

[1] F. P. Brooks, Jr., The Mythical Man-Month.
Addison-Wesley, 1975.

[2] L.H.Morin, “Estimation of resources for computer programming
projects,” M.S. thesis, Univ. North Carolina, Chapel Hill, NC,
1973.

[3] P. F. Gehring and U. W. Pooch, “Software development manage-
ment,” Data Management, pp. 14-18, Feb. 1977.

[4] P. F. Gehring, “Improving software development estimates of
time and cost,” presented at the 2nd Int. Conf. Software Eng-
neering, San Francisco, CA, Oct. 13, 1976.

[5] —, “A quantitative analysis of estimating accuracy in software
development,” Ph.D. dissertation, Texas Univ., College Station,
TX, Aug. 1976.

[6] J. D. Aron, “A subjective evaluation of selected program develop-
ment tools,” presented at the Software Life Cycle Management
Workshop, Airlie, VA, Aug. 1977, sponsored by U.S. Army
Computer Systems Command.

[7] P. V.Norden, “Useful tools for project management,” in Manage-
ment of Production, M. K. Starr, Ed. Baltimore, MD: Penguin,
1970, pp. 71-101.

[8] —, “Project life cycle modelling: Background and application
of the life cycle curves,” presented at the Software Life Cycle
Management Workshop, Airlie, VA, Aug. 1977, sponsored by
U.S. Army Computer Systems Command.

[9] L. H. Putnam, “A macro-estimating methodology for software

development,” in Dig. of Papers, Fall COMPCON °76, 13th IEEE

Computer Soc. Int. Conf., pp. 138-143, Sept. 1976.

—, “ADP resource estimating: A macro-level forcasting method-

ology for software development,” in Proc. 15th Annu. U.S.

Army Operations Res. Symp., Fort Lee, VA, pp. 323-327, Oct.

26-29, 1976.

—, “A general solution to the software sizing and estimating

problem,” presented at the Life Cycle Management Conf. Amer.

Inst. of Industrial Engineers, Washington, DC, Feb. 8, 1977.

[12] —, “The influence of the time-difficulty factor in large scale

Reading, MA:

[10]

[11]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 4, JULY 1978

software development,” in Dig. of Papers, IEEE Fall COMPCON
*77 15th IEEE Computer Soc. Int. Conf., Washington, DC, pp.
348-353, Sept. 1977.

L. H. Putnam and R. W. Wolverton, “Quantitative management:
Software cost estimating,” a tutorial presented at COMPSAC
*77, IEEE Computer Soc. 1st Int. Computer Software and
Applications Conf., Chicago, IL, Nov. 8-10, 1977.

C. E. Walston and C. P. Felix, “A method of programming
measurement and estimation,” IBM Syst. J., vol. 16, pp. 54~
73, 1977.

E. B. Daly, “Management of software development,” IEEE
Trans. Software Eng., vol. SE-3, pp. 229-242, May 1977.

W. E. Stephenson, “An analysis of the resources used in the
safeguard system software development,” Bell Lab., draft paper,
Aug. 1976.

“Software cost estimation study: Guidelines for improved cost
estimating,” Doty Associates, Inc., Rome Air Development
Center, Griffiss AFB, NY, Tech. Rep. RADC-TR-77-220, Aug.
1977.

G. D. Detletsen, R. H. Keer, and A. S. Norton, “Two genera-
tions of transaction processing systems for factory control,”
General Electric Company, internal paper, undated, circa 1976.
“Software systems development: A CSDL project history,” the
Charles Stark Draper Laboratory, Inc., Rome Air Development
Center, Griffiss AFB, NY, Tech. Rep. RADC-TR-77-213, June
1977.

T. C. Jones, “Program quality and programmer productivity,”
IBM Syst. J.,vol. 17,1977.

“Software systems development: A CSDL project history,” the
Charles Stark Draper Laboratory, Inc., Rome Air Development
Center, Griffiss AFB, NY, Tech. Rep. RADC-TR-77-213, June
1977.

A. D. Suding, “Hobbits, dwarfs and software,” Datamation,
pp. 92-97, June 1977.

T. J. Devenny, “An exploratory study of software cost esti-
mating at the electronic systems division,” Air Force Inst. of
Technology, WPAFB, OH, NTIS AD-A1030-162, July 1976.

D. H. Johnson, “Application of a macro-estimating methodology
for software development to selected C group projects,” NSA,
internal working paper, May 6, 1977.

J. R. Johnson, “A working measure of productivity,” Datamation,
pp. 106-108, Feb. 1977.

R. E. Merwin, memorandum for record, subject: “Data processing
experience at NASA—Houston Manned Spacecraft Center,”
Rep. on Software Development and Maintenance for Appollo-
GEMINI, CSSSO-ST, Jan. 11, 1970.

B. P. Lientz, E. B. Swanson, and G. E. Tompkins, “Characteristics
of application software maintenance,” Graduate School of
Management, UCLA, DDC ADA 034085, 1976.

R. E. Bellman, “Mathematical model making as an adaptive
process,” ch. 17, in Mathematical Optimization Techniques,
The Rand Corporation, R-396-PR, Apr. 1963.

G. E. P. Box and L. Pallesen, “Software budgeting model,” Mathe-
matics Research Center, University of Wisconsin, Madison, (Feb.
1977 prepublication draft).

“Management Information Systems,” A Software Resource
Macro-Estimating Procedure, Hq. Dep, of the Army, DA Pam-
phlet 18-8, Feb. 1977.

A. M. Pietrasanta, “Resource analysis of computer program
system development,” in On the Management of Computer
Programming, G. F. Weinwurn, Ed. Princeton, NJ: Auerbach,
1970, p. 72.

(13]

(14]

(15]
(16}

(17}

(18]
(19]

(20]
[21]

(22}
(23]
[24]
[25]
(26]
[27]
(28]
[29]
(30]

[31]

Lawrence H. Putnam was born in Massachusetts. He attended the Uni-
versity of Massachusetts for one year and then attended the U.S.
Military Academy, West Point, NY, graduating in 1952. He was com-
missioned in Armor and served for the next 5 years in Armor and
Infantry troop units. After attending the Armor Officer Advanced
Course, he attended the U.S. Naval Post Graduate School, Monterey,
CA, where he studied nuclear effects engineering for 2 years, gradu-
ating in 1961 with the M.S. degree in physics. He then went to the

PUTNAM: MACRO SOFTWARE SIZING AND ESTIMATING PROBLEM

Combat Developments Command Institute of Nuclear Studies, where
he did operations research work in nuclear effects related to target
analysis, casualty, and troop safety criteria. Following a tour in Korea,
he attended the Command and General Staff College.

Shortly thereafter he returned to nuclear work as a Senior Instructor
and Course Director in the Weapons Orientation Advanced Course at
Field Command, Defense Nuclear Agency, Sandia Base, NM. Follow-
ing that, he served in Vietnam with the G4, I Field Force, commanded
a battalion at Fort Knox, KY, for 2 years, and then spend 4 years in the

361

Office of the Director of Management Information Systems and As-
sistant Secretary of the Army at Headquarters, DA. His final tour of
active service was with the Army Computer Systems Command as
Special Assistant to the Commanding General. He retired in the grade
of Colonel. He is now with the Space Division, Information Systems
Programs, General Electric Company, Arlington, VA. His principal
interest for the last 4 years has been in developing methods and tech-
niques for estimating the life-cycle resource requirements for major
software applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manharaa.com

